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We consider a certain class of systems of linear differential equations 
with periodic coefficients which have the property that, by means of the 
Laplace transformation, they may be converted to a system of linear 
difference equations. The latter may be solved by the method of infinite 
determinants, i.e. the method of Hill [ l-7 1 L We consider the convergence 
of a certain type of infinite determinants which are not normal 13 I. In 
the particular case of a single differential equation with sinusoidal 
coefficients we construct the Laplace transform of the solution by means 
of continued fractions 18 1. We study the dynamical stability of the 
solutions of certain differential equations which occur in engineering 

[f-51. 

Capital letters denote matrices and vectors, while Lower-case letters 
refer to scalars. A matrix which depends upon a certain variable will be 
said to be holomorphic (or bounded, etc.) in a certain domain provided 
that each element of the matrix is holomorphic (or bounded, etc. ) in this 
domain. By the application of the Laplace transformation [ 9 1 to the 
matrix Y(t) (t ‘B 0) is meant the application of the Laplace transformation 
to each of the elements of the matrix Y(t) (t > 0). The correspondence 
between the original matrix Y(t) (t > 0) and its transform F(p), supposed 
to be continued analytically to its entire domain of existence, will be 
denoted simply by 

Y (t) + F (P) (0.1) 

1. Consider a system of linear differential equations with periodic 
coefficients of the special form 

1493 
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e-‘Q%!$ (d) t- (t) = 0 (1) ii.!\ 

Here Y(t) is an m-dimensional vector, 
number, 1 is a finite number, Lq(d) is a 

L, (d) = $ A,# 
j=O 

0 fc 0 is a purely imaginary 
linear differential operator 

and the A 
qi are constant, complex, m-by-m matrices such that 

with the matrix E being the identity matrix. Let us seek the solution 
Y(t) of the system (1.1) satisfying the initial conditions 

1. (0) == y,(O), . . .) p-1) (0) -;I‘ yoW) (I .4) 

In order to do this, let us suppose that Q(t) ft > 0) possesses a 
Laplace transform Q(p) which is regular and bounded for Re p > b. 

Applying the laplace transfor~tio~ [ 9 1 to the system (1.1) for 
t > 0, and using tO.l), we obtain for F(p) the system of linear differ- 
ence equations 

where 

Let us seek a solution F(p) of the system of difference equations 
(1.5) which is regular and bounded for Re p ab,l(b, = const). Such a 
solution, for example, is the transform of Y(t) itsel-f. Replacing p+ok 
by p in (1.51, and then dividing through by (kw)” (k&,0), we obtain 
instead of (1.5) the following infinite system of linear algebraic equa- 
tions in the quantities F(p + ok) (k = 0, 4 1, * 2, . . . ): 

where p may be considered as a parameter in the coefficients. Further, 
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in order not to have to consider the special case k = 0 in particular, 
let us include (1.5) in (1.7) by agreeing ta regard (ko~)-~ as equal to 

one when k = 0. 

‘Ihe matrix determinant of the system (1.7) is itself a quasimatrix 
with quasimatrix elements ((k - g ) o )-“Lp(p + ok). ‘Ibis determinant, 

which will be denoted by A(p), has the form 

I 

2. Consider the sequence of determinants A,,.(p) (y = 1, 2, . . . ), con- 
taining (2y- 1) m rows and columns, whose matrix is obtained from the 
matrix of the matrix determinant A(p) in such a way that the quasi- 
element L,,(p) lies at the center of the determinant A,@). 

Suppose that X is a finite domain of the plane of the complex variable 
P- Consider the convergence in 2 of the determinant A(p) and of the 
algebraic complements of the elements of the column which contains Lo(p); 
that is, the convergence of the determinants A+) as Y + 00, and the 
convergence of the algebraic complements of the corresponding elements 
occurring in A,,(p) (y is supposed to be sufficiently large). Let us de- 
note the elements of the determinant A(p) by crsqk(p), where the sub- 
scripts and superscripts mean that the element c,, qk(p) lies on the 
intersection of row s and column I‘ of the quasi-element 6% (p +wk). 

From (1.2) and (1.3) it follows that the elements along the &in&pal 
diagonal are given by 

(E, r = i. 2.. . ., m, q -: cl,? 1,. . _) = 1, 1; rz.0, Ll, _” 2,. .; s+r f*r p = 0) 

a) If iz$ = O(s k r when q = 01, then the determinant A(p) may be re- 
duced to the class of normal determinants [3 I, One only needs 12 1 to 
multiply each column consisting of the elements (2.1) by 

exp { - (Ctip + &“-‘> / liW> (k = 5 I, 2 2, . , r = 1,2, . . . , m) 

‘Ibis transformation does not alter the value of the determinants 

$,(PL and the sum of all the elements of the infinite determinant (not 
counting the ones along the main diagonal) converges absolutely and 



1496 K.G. Vu teev 

uniformly for PEE 2 . Consequently, BY(p), and the algebraic complements 
to the elements on the columns which pass through L,.,(p), converge uni- 
formly for pi B to functions p which axe holomorphic in 2; and hence 
all of them are bounded in absolute value by a certain constant. 

b) If a$ f 0 (r f s when q = O), then one no longer has the absolute 
convergence of the elements off the main diagonal. Let us order these 

elements C,,(p , Ok > k f 0, which lie along the diagonal as follows: the 

element c;;(p) precedes ~~~(~) provided that 1 Q 1 < / y 1 ; if 1 a 1 = iy 1 ‘I 
then a > y; if a = y, then @ > 8. 

Consider the diagonal element cO,“C,(p) and the elements c$(pf of the 

column passing through the element cik,(p), lying below it for k > 0 (and 
above for k < 0) and belonging to the quasi-element 

((k-q)co)-V&+wk), k>l, k-q>1 (/cdl, k--<----1) 

Let us multiply the row containing the element c::(p) by a:;“-‘, and 

subtract it from the corresponding row containing the element cSr qko& 
and so forth. Let us proceed analogously with the elements in the rows 
lying to the right for k > 0 (to the left for k < 01, but only for k > I, 
k- q>l (k g- 1, K- q1s- 1). 

The determinant A*(p) so obtained may be reduced to the type of deter- 
minant considered in (a). In order to do this it is necessary to carry 
out a countable number of operations, and it may be verified that the 
determinant A,, (p) may be expressed as a linear combination of a finite 
number of the minors of the determinant AT*(p), and that A+) 2 A*(p) 

asy+m, pGX. The algebraic complements to the elements lying in 
the columns passing through L,(p) in the determinant A(p) may be ex- 
pressed as linear combinations, with coefficients which are bounded in 
absolute value, of the corresponding columns in the determinant A*(p), 

Thus, in view of the arbitrariness of the domain 2, the following 
theorem has been proved: 

Theorem 2.1. The determinant A(p) in (1.81, and the algebraic comple- 
ments of the elements lying in the c61umns which pass through LO(p), con- 
verge to entire functions of p which are uniformly bounded in absolute 
value on each finite d&ain I: of the complex variable p. For PET, the 
convergence is both absolute and uniform. 

Note 2.1. The determinant A(p) and the algebraic complements of the 
elements in the columns passing through to(p) are entire functions of the 
coefficients a,,gj of (1.3). 
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Note 2.2. If A(pO) = O, then A,,(p) will have a zero which is arbitra- 
rily near to p, whenever y is sufficiently large. 

It will be supposed, further, that the domain 2 is so chosen that all 

the vectors 

F (P 4 ko), (ko)+” R (p + km) (k=O, &1,*2,...) 

are bounded whenever p GE 2 . Such a finite domain lies, for example, in 

Re p > 6,. Let us suppose that A(p) > c > 0 for pEZ . Let us solve, 
in succession, the systems of equations arising from fl.5) and fl.?), 
with determinants 4,,(p) as unknowns, by Cramer’s rule; it being under- 
stood that all other terms in these equations are first transposed to the 
right-hand sides. 

In view of Theorem 2.1, we obtain, as y + =, in the domsin Re p > b,, 
a solution for F(p) in the form of a certain infinite determinant divided 

by AC(p). Expanding formally this numerator determinant along the column 
with cowonents R(p + km), we obtain the solution of the difference 
equations (1.5) in the form 

where the elements of the matrices Bk(p) are entire functions of p. From 
the properties of the solutions of system (1.l) it may be asserted that 
the series (2.3) converges for Re p> b,, and that it indeed represents 
a solution of (1.5). 

An approximate solution of the system (1.l) may be obtained by find- 
ing the inverse Laplace transform of an approximate solution for F(p) 
whose components are the ratios of finite determinants. In this way one 
may seek a solution of the nonhomogeneous system (1. I) subject to initial 
conditions. 

& Let us employ the methods of 141 to obtain another representation 
for the determinant A(p). Let us factor out the terms along the main 
diagonal of the determinant A(p). Let psh(s = I, . . . , m, h = 1, . . .) n) 
be the roots of the equations atf(p) = 0. Then 

Let .us call the remaining determinant D(p). Since the product (3. l) 
of the diagonal elements is convergent, it follows that the determinant 
D(p) converges at all numbers which differ from the numbers P.&k: 
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'Ihe determinant D(p) 
period o. Let us reduce 

lhen 

(s = 1, . ., m, h = 1, . ., II, It --_ 0, t 1, i 2, . .) (3.2) 
is a periodic meromorphic function of p with 
it to normal form by the method of Section 2. 

D (P) 2 1 for IRep!-cu 

%wse, for simplicity, that the numbers p,h& 
case where some of them coincide is considered in 

from1411 
mn 

D (P> = 1 + 2 2 &h Cot 
s=1 h =I 

(; cp - psi,)) , 

(3.3) 

are all distinct (the 

12 I ) and we obtain, 

where the as,, are certain constants. Let us express A(p) in terms of 

D(p) and the product (3.11, setting, in (3.1) and (3.4) 

zsjL=exp(Fp8h) (S=i ,..., m, h=l,..., p) (3.5) 
._ 

Then 

(3.6) 
A ($$ lnz) = (&)"" (fi fi (zz&-){(Z- Z1l> (2 -z12). . . (2 - Zmn) 1- 

a=1 h -1 

+ 41 t= f zll) (2 - z12). . .(z - zmn) f-. . . + id,,, (z - zll) (z - z12). . .(z f z,,)) 

From (3.4) it follows that the braces contain a polynomial with the 

leading term zn" and the constant term z~~z~~...z,,,. Equating this de- 

terminant to zero we obtain the characteristic equation for the multi- 

pliers of the solutions of system (1.1). 'lhe factor in front of the 

braces in (3.6) does not vanish for any finite value of p. From this it 

follows that the Hill determinant A(p) of (1.81, times a certain known 

multiple, may be expressed directly in terms of the coefficients of the 

characteristic polynomial of the solutions of the system (l.l), due 

account being taken of (3.5). The theorem is proved. 

Theorem 3.1. The solution of the system of linear difference equa- 

tions (1.51, which is bounded for Re p > b,, (bl = const), is uniquely 
representable in the form (2.31, where the elements of the matrices 

Bk(p) are entire functions of p, and A(p) is an entire function of p 

with period o, whose zeros are the characteristic exponents of the solu- 

tions of the system of equations (1.1). 

Ihe last assertion of Theorem 3.1 has been known for a long time 11, 

2 1, In these papers, and also in [5, 7 I, representations of the form 

(3.61, or their modifications, are used to determine the constants ash. 
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In 16 1 the determinant A(p) is used for the solution of the equation 
A(p) = 0. In Section 5 of the present paper a method related to that of 

[6 I is used. 

4 Consider the linear differential equation with sinusoidal coeffi- 

cients Cl0 I 

jJ (up) + al$e-mf + uj;-Up’) ‘2 = cp (t) 

k=o 
(4.1) 

where u:" are complex constants; +(tl+ g(p), where g(p) is a regular 

and bounded function of p for Re p> b, Re o = 0. Let us seek the trans- 

form f(p) of the solution y(t) (t > 0) with initial conditions 

y(0) = yf’, . . ., y@-1) (0) = ,p-1’ 

Let us assume that 

p$12 > 4ja;q-1) 1 

(4.2) 

(4.3) 

that is, the coefficient of the highest-order derivative does not vanish 

for any t. Let us introduce the notations 

k=o 

n-1 n 

qq (p) = ,z 2 ujp)yc)pk+-1 
j=o :;++I 

(;1= 0, f 1) (4.4) 

'lhe difference equation for f(p) takes the form 

; f*(P+OQ)f(P+OQ)=g(P)+ i: s*(P+P)'r(P) (4.5) 
a=-1 9=-l 

Forming the ratio of infinite determinants, and expanding them (see 

Section 21, we obtain the solution of (4.1) as a series 

where s(p) and h(p) are given by the continued fractions [s] E 

s (PI = h(P + Nf-l(P) 

lo (Pf 0) - 

fl(P + 2o)f-lb-i- 0) 

fo(P+2a)_h(P- 3m)f-l(P--20) 
fo(p-330)-... 

(4.7) 
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Jt (PI = f-r (P c___ a) f 1 (PI 

fo (P - 0) - 
f-l (P - 20) f 1 (P - a) 

fo(p_22w)____l-1(P -3@)f1 (P - 201 
fo(p--330)---. . 

In view of (4.31, the continued fractions (4.7) converge for all 

values of p to meromorphic functions [8,10 1. The representation of the 
transform f(p) of the solution y(t) by means of (4.6) and (4.7) is very 

convenient for the numerical computation of the solution of Equation 

(4.1) in the special case when #hit is a sum of terms of the form 
cjtYjeWj' . It should be noticed that all roots of the equation v(p) = 0 

are characteristic exponents of solutions of (4.1). The converse is not 

always true. 

The equation for the characteristic exponents of the solutions, in 

the form 

o(P>--fo(P)---s(p)--h(p)=O (4.8) 

was obtained by Ince [111 for hkthieu's equation, and for Equation 14.1) 

by Patry 110 1, as a result of expanding the solution y(t) of (4.1) in a 
Fourier series. 

Exaaplpe 1. [: 12 1 . Consider Mathieu's equation in the presence of 
friction 

0 -@ + c 2 + (a i_ %!I cos 21) y If 0 (c > 0) 

The characteristic exponents of the solutions of Equation (4.9) are 
obtained from the equation 

b” b2 
o(P1=f,tP)-- @ - .- 

6’! 0 (‘t.10) 

fo (Ps-w -fop + &) __ . fn (P-W - I’0 fp _ &) _.: 

where fo(p) = p2 + cp + a. Using (4.101, let us write the equation of 
the boundary of the yth domain of instability of the solutions of Equa- 
tion (4.9). Since at the boundary of the domain of instability one of 

the characteristic exponents equals yi, where y is an integer, the de- 
sired equation is v(yi) = 0. In particular, for y = 1 we obtain 

a-1 +ci- 
b2 $2 

bt 
: h’ !, ‘! 1 ,I ) 

a-9+3ci- 
a-25+-5&~ j 

Equation (4.10) holds for finite a, b, e; it is also the equation of 

all odd domains of instability. 



5. Consider the system of differential eqnations of the form 

(5. i) 

where C = (y’, . +. , o,“> is a diagonal matrix, 0 > 0, “i2 > 0 (j = 1, 
. ..f m), and p is a small parameter: 

(k) with complex constants V. * vi8 
(k1 

IS 
, and 1 is a finite n&r, 

Let us assume that 8 = 0, + ,uX, (A = coast), B0 > 0, and let us apply 
‘Iheorem 2.1, in order to obtain the characteristic exponents of the 
solutions of Equation (5. II, as functions of the parameter ;ct. Consider 
the general case of resonance and the set of 2nt numbers 

011 * * ‘7 Wmr - 01, * * ‘f - %n G4 

Let us divide them into two groups, putting in one group all the 
numbers (5.3) which differ among themselves by quantities kf?,,where k 
is an integer. These groups are 

(Pr1: ' * * , P1pJt f ‘ * I (Pal, l * *, PqJ (p,+*..+p,=2nt) (5.4) 

kt Pjh indicate one of the numbers (5.3); if this is the number oS 

or o_,, then the symbol Ejh 1 will indicate number s, where j designates 
the group 

Let us 

h= 1, I.1 

where the 
Q RjSj. 

Let us 

of (1.8). 

number and h the number within a group. 

suppose that the pjh are arranged in nonincreasing order for 

I F3jP and let us denote 

Iija 1.z (pjx - Pjrr) ‘j,,el ci =f,..., 31, /1=x i,‘.., $,, (5.5) 

numbers kjh are nonnegative integers satisfying 0 = &jl g + a e 

set p = 
ipjl +i c1 Z, for j = 1, . . +, a, in the determinant Ah(p) 

Since for Equation (5.1) we have (see Section 1) 

then along the main diagonal there are terms of order p, and off the 
main diagonal all terms are of order p. 
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Let us make use of Note 2.2 of Theorem 2.1. In order to do this, con- 

sider a sufficiently large determinant A,(p) (see Section 2). It may be 

regarded as an approximation to A(p). Regarding the equation A,$ ipjl + 
ip z) = 0 as an equation defining the algebraic function z(p), we obtain 
from Newton's diagram 19 1 that the characteristic exponents of the solu- 
tions of system (5.11, pjc(p), (j = 1, . . . . a; [= 1, . . . . pi> may be 

expanded in series of the form 

(5.7) 

j = 1, !5., 

where u. > 0 in general fractional numbers, and the numbers Zj~' for 

a; 5= l, ...) Pjt are roots of the equations 

with 

(5.8) 

(5.9) 

((j,r,S) E kjr - kjs, S,,- Kronecker’ s symbol 

For the proof, let us mark the columns and rows which contain elements 

along the main diagonal of the determinant &,,(ipjl + ip z) which vanish 

for p = 0. Consider the determinant formed by the intersection of these 

columns and rows. This determinant differs only by an unessential factor 

from the determinant (5.8). The remaining elements need not be taken into 

account in a first approximation. 

Knowing the numbers zjt, we may seek to determine the stability of 

system (5.1) in first approximation. Upon varying X we may determine in 

the plane ep wide domains of parametric resonance which are adjacent to 

the frequency 8,. It should be noticed that the finiteness of I, y does 

not influence the final formulas (5.81, (5.9). Consequently, the func- 

tions N(r), P(r) may be regarded as of integrable square on the interval 

[O,ZRlr 

Formulas analogous to (5.81, (5.9), f or the canonical case of system 

(5.11, have already been obtained by Iakubovich [14 1, 

Exanple 2. Consider the system of eWatiOnS 
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where E 11, . . . , az2 are real numbers, andee=@I++, wl>o+> 0. 

In the notation of Section 5 we have 

Equation (5.8) for zIl, ~1~ takes the form 

If we require that the inequalities Im zIl > 0, Im z12 > 0 hold for 

every 1.c(- =, m) , we obtain the conditions 

In view of the fact that the coefficients of system (5.10) are real, 
Im z21 > 0, 1x1 zg2 > 0; therefore conditions (5.12) are the conditions 
for the asymptotic stability of the solutions of (5.10) for small values 
of /.l. 

In the equation A(p) = 0 let us make the following simplifying trans- 
formation: let us divide the rows of the determinant by the elements of 
the rows which lie on the Rrincipal diagonal of the determinant A(p), 
with the exception of the rows in which these elements vanish for p = 0, 
p = pjli. If we expand the determinant so obtained in terms of the first 
order in p = pji + pzi, we must first seek the elements which lie on the 
intersection of columns and rows passing through elements which lie on 

the principal diagonal of A@ jl i + pzi) and vanish for p = 0. In the 
following higher-order terms there appear only elements lying in the 
already-mentioned rows and columns. In particular, if in (5.1) the matrix 
Pm is self adjoint, then 

(‘I,, 
N (of) z t7. p =.- 1, I = cc, & =: 2, ~11 = og, ,JI~ = - w,!. 0” = % h_- 

(i.e. the relation ~g + ah = kf& holds only for the given g, h, k), we 

obtain an equation for p, written below, including third-order terms in 

“js 
(k): 

(p2 + mg2 i- n&l))) ((p - kfJi)z + Oh2 + Z,,,(O)) - JlghW x/&W - (5.13) 
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where the prime indicates that the terms in the summations with zero de- 
nominators are omitted. 

If ~g~(~)~~8 (-‘) f 0, then Equation (5.13) enables one to determine 
two characteristic exponents which are near i&g up to second-order terms. 

By requiring that Equation (5. 13) have a multiple root near p = iog , 

we obtain the equation of the boundary of the domain of stability, UP to 

terms of second order with respect to rrj, (k) . 

ExarpEe 3. [ 13 ] , Consider the equation 

(5.14) 

we obtain that Equation (5.13), constructed for Equation (5.14). has a 

multiple root provided that 

(5.1.5) 

For e_ < li c e+, the characteristic exponents have a nonzero real Part, 

and the solutions of Equation (5.14) are unstable [ 13 3 L 

In conclusion, I wish to thank A. I. Lnr’e for his suggestions and for 
his help in connection with this paper. 
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